New data from the Hubble Space Telescope and computer simulations have revealed that the universe has much less ultraviolet light than previously thought.
One potential source of this missing light might be the mysterious dark matter that makes up most of the mass in the cosmos. But a simpler explanation could be that ultra violet light escapes from galaxies more easily than is currently thought, according to the new research.
This puzzle begins with hydrogen, the most common element in the universe, which makes up about 75 percent of known matter. High-energy ultraviolet light can convert electrically neutral hydrogen atoms into electrically charged ions. The two known sources for such ionizing rays are hor young stars and quasars, which are supermassive black holes more than a million times the mass of the sun that release extraordinarily large amounts of light as they rip apart stars and gobble matter.
Astronomers previously found that ionizing rays from hot young stars are nearly always absorbed by gas in their home galaxies. As such, they virtually never escape to affect intergalactic hydrogen.
However, when scientists performed supercomputer simulations of the amount of intergalactic hydrogen that should exist and compared their results with observations from the Hubble Space Telescope‘s Cosmic Origins Spectrograph, they found the amount of light from known quasars is five times lower than what is needed to explain the amount of electrically neutral intergalactic hydrogen observed.