The Tyranny of Simple Explanations

Imagine you’re a scientist with a set of results that are equally well predicted by two different theories. Which theory do you choose?

This, it’s often said, is just where you need a hypothetical tool fashioned by the 14th-century English Franciscan friar William of Ockham, one of the most important thinkers of the Middle Ages. copernicusCalled Ockam’s razor (more commonly spelled Occam’s razor), it advises you to seek the more economical solution: In layman’s terms, the simplest explanation is usually the best one.

Occam’s razor is often stated as an injunction not to make more assumptions than you absolutely need. What William actually wrote (in his Summa Logicae, 1323) is close enough, and has a pleasing economy of its own: “It is futile to do with more what can be done with fewer.”

Isaac Newton more or less restated Ockham’s idea as the first rule of philosophical reasoning in his great work Principia Mathematica (1687): “We are to admit no more causes of natural things, than such as are both true and sufficient to explain their appearances.” In other words, keep your theories and hypotheses as simple as they can be while still accounting for the observed facts.

This sounds like good sense: Why make things more complicated than they need be? You gain nothing by complicating an explanation without some corresponding increase in its explanatory power. That’s why most scientific theories are intentional simplifications: They ignore some effects not because they don’t happen, but because they’re thought to have a negligible effect on the outcome. Applied this way, simplicity is a practical virtue, allowing a clearer view of what’s most important in a phenomenon.

But Occam’s razor is often fetishized and misapplied as a guiding beacon for scientific enquiry. It is invoked in the same spirit as that attested by Newton, who went on to claim that “Nature does nothing in vain, and more is in vain, when less will serve.” Here the implication is that the simplest theory isn’t just more convenient, but gets closer to how nature really works; in other words, it’s more probably the correct one.

There’s absolutely no reason to believe that. But it’s what Francis Crick was driving at when he warned that Occam’s razor (which he equated with advocating “simplicity and elegance”) might not be well suited to biology, where things can get very messy. While it’s true that “simple, elegant” theories have sometimes turned out to be wrong (a classical example being Alfred Kempe’s flawed 1879 proof of the “four-color theorem” in mathematics), it’s also true that simpler but less accurate theories can be more useful than complicated ones for clarifying the bare bones of an explanation. There’s no easy equation between simplicity and truth, and Crick’s caution about Occam’s razor just perpetuates misconceptions about its meaning and value.

The worst misuses, however, fixate on the idea that the razor can adjudicate between rival theories. I have found no single instance where it has served this purpose to settle a scientific debate. Worse still, the history of science is often distorted in attempts to argue that it has.

Take the debate between the ancient geocentric view of the universe—in which the sun and planets move around a central Earth—and Nicolaus Copernicus’s heliocentric theory, with the Sun at the center and the Earth and other planets moving around it. In order to get the mistaken geocentric theory to work, ancient philosophers had to embellish circular planetary orbits with smaller circular motions called epicycles. These could account, for example, for the way the planets sometimes seem, from the perspective of the Earth, to be executing backwards loops along their path.

It is often claimed that, by the 16th century, this Ptolemaic model of the universe had become so laden with these epicycles that it was on the point of falling apart. Then along came the Polish astronomer with his heliocentric universe, and no more epicycles were needed. The two theories explained the same astronomical observations, but Copernicus’s was simpler, and so Occam’s razor tells us to prefer it.

This is wrong for many reasons. First, Copernicus didn’t do away with epicycles. Largely because planetary orbits are in fact elliptical, not circular, he still needed them (and other tinkering, such as a slightly off-center Sun) to make the scheme work. It isn’t even clear that he used fewer epicycles than the geocentric model did. In an introductory tract called the Commentariolus, published around 1514, he said he could explain the motions of the heavens with “just” 34 epicycles. Many later commentators took this to mean that the geocentric model must have needed many more than 34, but there’s no actual evidence for that. And the historian of astronomy Owen Gingerich has dismissed the common assumption that the Ptolemaic model was so epicycle-heavy that it was close to collapse. He argues that a relatively simple design was probably still in use in Copernicus’s time.

So the reasons for preferring Copernican theory are not so clear. It certainly looked nicer: Ignoring the epicycles and other modifications, you could draw it as a pleasing system of concentric circles, as Copernicus did. But this didn’t make it simpler. In fact, some of the justifications Copernicus gives are more mystical than scientific: In his main work on the heliocentric theory, De revolutionibus orbium coelestium, he maintained that it was proper for the sun to sit at the centre “as if resting on a kingly throne,” governing the stars like a wise ruler.

If Occam’s razor doesn’t favor Copernican theory over Ptolemy, what does it say for the cosmological model that replaced Copernicus’s: the elliptical planetary orbits of 17th-century German astronomer Johannes Kepler? By making the orbits ellipses, Kepler got rid of all those unnecessary epicycles. Yet his model wasn’t explaining the same data as Copernicus with a more economical theory; because Kepler had access to the improved astronomical observations of his mentor Tycho Brahe, his model gave a more accurate explanation. Kepler wasn’t any longer just trying to figure out the arrangement of the cosmos. He was also starting to seek a physical mechanism to explain it—the first step towards Newton’s law of gravity.

Read the rest of the article at www.theatlantic.com

Trackback from your site.

Leave a comment

Save my name, email, and website in this browser for the next time I comment.
Share via