‘new physics’ explains galaxy rotation and theoretical space propulsion
Dark matter faces quantised inertia. One of these ideas must leave town, or the galaxies, it seems.
British physicist Dr Mike McCulloch, who previously used quantised inertia to explain how the controversial electromagnetic space propulsion technology EmDrive works, says that he has new evidence showing his theory can also explain galaxy rotation, which is one of physics’ biggest mysteries, as the IB Times reports.
McCulloch, a lecturer in geomatics at Plymouth University’s school of marine science and engineering, says he now has even more evidence that his “new physics theory” about quantised inertia works, and that it makes it possible to explain why galaxies are not ripped apart without using theory of dark matter.
One of the biggest problems in physics today is how galaxies rotate. Galaxies are collections of millions of stars swirling around, and galaxies spin so rapidly that their centrifugal force should cause them fly apart, as there isn’t enough visible matter in them to hold them together by the force of gravity.
To try explain how galaxies are held together, astronomers use the popular theory of dark matter, which was discovered by Fritz Zwicky in 1933 and then popularised by Vera Rubin in the 1970s.
Galaxies and how dark matter works
The theory is that galaxies contain dark matter and that this makes them gravitationally stable in the standard model of physics. McCulloch is sceptical about dark matter and he says that it is an implausible theory to explain dwarf galaxies, which are super-tiny galaxies containing only between 1,000-10,000 stars that revolve around the Milky Way.
There are 20 dwarf galaxies in existence from Segue-1 (the smallest) to Canes Venatici-1 (the largest), and dark matter is only meant to work by spreading out across a wide distance, but it is still used to explain dwarf galaxies, even though this requires dark matter to be concentrated within these systems, which is implausible.
Instead, McCulloch asserts that quantised inertia can be used to explain how galaxies rotate without using dark matter, and he has written a paper that has been accepted by the bi-monthly peer reviewed journal Astrophysics and Space Science.
“The photons in the EmDrive, when they go into the narrow bit of the EmDrive, fewer Unruh wavelengths fit into that narrow bit, so they lose inertial mass, and that’s what I’m saying causes the EmDrive to move,” he told IBTimes UK.
“In the galaxy, as you go out to the edge, the acceleration of the stars reduces, and that means the Unruh wavelengths get longer. Just like for the EmDrive, few of them fit into the cosmos so their inertial mass decreases in the same way. This is further evidence that this theory is correct, as it seems to explain both the EmDrive and galaxy rotation.”
The report continues here.
Read more at tallbloke.wordpress.com
Trackback from your site.