Hallmarks of Alzheimer’s Are Stimulated by This Substance
Boyd Haley, Ph.D., is a chemist specializing in the development of chemicals to chelate toxic metals, both from the environment and the human body
I had the opportunity to interview Haley at the 2018 Academy of Comprehensive Integrative Medicine (ACIM) conference in Orlando.
Haley’s Ph.D. is in chemistry and biochemistry. He conducted research funded by the National Institutes of Health (NIH) for 25 years at the University of Wyoming and at the University of Kentucky.
Early in his career, he developed a biochemical detection system called nucleotide photoaffinity labeling and has published studies on its usage.1
Haley explains:
“I took ATP and made it radioactive, which isn’t a big feat. But then I attached to that a molecule that would explode when it hit a photon of light.
When it exploded, it made a very reactive intermediate that had a half-life of something like 10-12 or 10-13 seconds.
If ATP was bound to a protein, such as sodium potassium ATP [and] … you hit it with light, it would form a covalent bond at the binding site of ATP on the enzyme it was interacting with …
You could use these kinds of probes to see the difference between the ATP, guanosine diphosphate (GDP), cyclic adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NADH) — all these binding proteins, to see how the energetics of the cell was changing.”
Haley’s Alzheimer’s Research
“There were dramatic differences,” he says. For example, the enzyme creatine kinase, which is a fundamental enzyme, is 98 percent inhibited in Alzheimer’s patients. They also discovered that tubulin — a major brain protein that holds an axon in its extended form and controls the growth direction of axons and dendrites — is inhibited by more than 80 percent.
In 1989, he published the paper2 “Aberrant Guanosine Triphosphate-Beta-Tubulin interaction in Alzheimer’s disease” in the Annals of Neurology, stating that “These results support the hypothesis that microtubule formation is abnormal in brains affected by Alzheimer’s disease.”
Haley goes on to recount the story of how he got into trouble with the NIH when he decided to investigate the influence of heavy metals on Alzheimer’s susceptibility. A popular theory at the time was that Alzheimer’s was caused by aluminum toxicity.
Using his technology, he was able to show that mercury was the only heavy metal capable of causing a normal brain to develop the same biochemical abnormalities — including abnormal tubulin — that you find in Alzheimer’s disease.
Haley claims his research has since been replicated and confirmed. According to Haley, mercury causes the synaptic clefts to disappear and triggers the formation of neurofibrillary tangles, a major diagnostic hallmark of Alzheimer’s, by causing abnormal hyperphosphorylation of tau.
He also published a paper3 in the respected medical journal Proceedings of the National Academy of Sciences in 1992, detailing how the presence of glutamine synthetase in the cerebrospinal fluid may be a potential diagnostic biochemical marker of Alzheimer’s disease, as well as more than 100 other studies,4 including a review of the relationship between mercury and autism,5 and research showing how the chelating agent he developed, emeramide (NBMI), protects against the cytotoxicity of mercury.6
Biochemical Abnormalities Are Stimulated by Mercury
“What happens is mercury inhibits the expression of neprilysin, which is the main protease in the brain used to chew up beta-amyloid. Mercury doesn’t affect beta-amyloid, but what it does do is it keeps the protease, the cleanup enzyme, from being expressed,” he explains.
“If you give mercury at low levels, very low levels, to tissues that are going to live for a while, you’ll see a buildup of beta-amyloid protein. The bottom line is: 6 out of 6 of the major biochemical abnormalities and pathological hallmarks of Alzheimer’s disease can be stimulated by adding mercury.
I can tell you that was something that NIH, or the people who run NIH at the very top, did not want to hear … They said beta-amyloid is the cause of Alzheimer’s disease. That made them heroes — they found the cause, so now they would find the cure …
But they don’t want to look at it being something simple. There’s no money to be made if you tell people, ‘If you don’t want to get Alzheimer’s disease, don’t expose yourself to mercury.’
Mercury is not the only cause. I would never say that, and I never did say that. I said, ‘Mercury is the major exacerbating factor7 because we put dental amalgams in our mouth, and the major exposure, the source of mercury in our body, comes from them [sic] amalgams, according to the World Health Organization (WHO).’”
The Transformation of a Skeptic
His scientific investigations eventually convinced him that amalgams are a major source of mercury exposure that can indeed exacerbate and trigger chronic illness — something he details in his 2014 paper,8 “Evidence Supporting a Link Between Dental Amalgams and Chronic Illness, Fatigue, Depression, Anxiety and Suicide.”
Haley also recounts the twists and turns in his life that brought him to investigate the links between mercury toxicity and autism, and how vaccines can be a source of toxic mercury exposure. While thimerosal (mercury-based preservative) has been removed from many childhood vaccines, it’s still used in some.
One tipoff that thimerosal was bad news came from a 1977 report from Toronto Hospital, where 10 of 13 infants died after having their umbilical region treated with merthiolate (thimerosal) to kill bacterial infection. Merthiolate is no longer in use, as it was discovered that these infants died from mercury toxicity.
This report revealed that thimerosal turned into ethyl mercury, which the infant body cannot eliminate. Despite that, a mere decade later, in 1988, the U.S. Centers for Disease Control and Prevention decided thimerosal was an appropriate preservative for use in vaccines given to newborn babies and infants.
How Genetics Influence Your Mercury-Elimination Capacity
The ApoE2 gene has two cysteine molecules on the surface, whereas ApoE4 — which is a major risk factor for Alzheimer’s — has two tyrosine molecules. These are amino acids on the structure. The cysteine amino acid on E2 binds effectively to mercury, whereas the tyrosine on E4 cannot bind to mercury at all.
As a result, having two copies of the ApoE4 gene places you at a significant disadvantage, as your brain cannot eliminate mercury naturally, whereas having two copies of ApoE2 is highly protective because your brain has the ability to clear out mercury.
It is also helpful to note that Dr. Dale Bredesen who wrote the book “The End of Alzheimer’s,” believes the ApoE4 allele may actually protect against Alzheimer’s if you are metabolically flexible and regularly engage in intermittent or partial fasting.
Therapeutic Interventions to Address Mercury Toxicity
By displacing iron from the iron sulfur centers mercury also blocks the cytochromes, as cytochromes require iron to work. “There are publications now showing that mercury exposure totally screws up the metabolism of iron in the body,” Haley says.
The chelating compound he developed, called emeramide or NBMI,9 tightly binds to both mercury and free iron, which is also highly toxic. As such, emeramide can also be used in the treatment of hemochromatosis, a genetic disease that causes chronic iron overload.
Drawbacks of Most Popular Chelating Agents for Mercury
A significant problem is their ability to translocate mercury from the blood and other organs and concentrating it in the kidneys, thereby causing renal failure. What’s more, most of the mercury is not in your blood but rather in your cells, and neither DMPS nor DMSA can enter the cell, Haley claims. They only remove mercury from your blood.
“I initially developed the idea that I had to have a hydrophobic chelator that would get into the mitochondria, into the DNA … Mercury is hydrophobic. It’s uncharged. It’s a gas. It goes through the biomembrane. You have to have a chelator that does the same thing.
[The mercury] starts out as a gas. It goes in as Hg0 when you breathe mercury vapor [from your mercury dental fillings], and then it goes wherever it wants. [If you’re eating fish], then it will be methyl mercury, but it’s the same thing. Methyl mercury is also membrane-permeable.
It goes right through membranes because it binds. It’s CH3Hg+. But if it’s in the blood, there’s a high level of chloride, and chloride binds that negative charge, so you end up with some of the Hg methyl mercury in the chloride form that can go right through the membrane because it’s uncharged. That’s the reason it gets through the brain so effectively,” Haley says.
“[T]hen, in the brain or in any tissue, it gets converted into Hg2+ by an enzyme called catalase … and then it becomes very toxic; it’s charged, and then it won’t go out [of the cell].”
Haley’s Decision to Develop a Better Chelator
Trackback from your site.
Roo63
| #
There is no money in curing people.
Reply
Typhus
| #
Isn’t NAC supposed to induce the production of Glutathione in the body?
This in turn then can do the job of ridding the body of mercury, via that binding effect.
It’s said to also rid the body of the rumored self assembling graphene oxide. Thus disassembling ones main entry into the Cyborg Legions now becoming.
Reply
T. C. Clark
| #
I am on my second bottle of NAC…id not know that it might also help against meeting Mr. Alzheimer….take it for its leading to anti-inflammatory properties.
Reply