CO2 Not A Threat To Oceans
For the past three decades, the public has been taught by the news media and the folks who make a living composing mathematical equations they claim to simulate how our planet’s climate operates, that our oceans are in jeopardy.
They have all told you one of the biggest falsehoods in human history.
They say that carbon dioxide, the only reason man can inhabit Earth, is causing the planet to heat up to a dangerous level and the oceans will become unlivable for marine life. There is no proof of these lies whatever. Civilization has generally been most prosperous under warmer than colder conditions.
We do know that as many as nine times more folks perish from excessive cold than excessive heat. The oceans are prospering with more CO2 overhead. Be that as it may much of the public has bought the scare.
Regardless of what scientists on the right side of the issue come up with to thwart the misinformation, they are drowned out by the media and the well-financed climate modelers on whom governments around the world have showered countless billions of dollars.
Little of the true reality supported by science has succeeded in winning over the world’s governments to scientific reality.
Now comes along biologist Jim Steele of the CO2 Coalition and former Research Director of San Francisco State’s Sierra Nevada’s Field Campus to drop a blockbuster of truly new knowledge.
He has proven how our Oceans, all of them, are benefitting enormously by the increase in carbon dioxide which man’s industrialization has produced. The global warming scaremongers have falsely preached that additional carbon dioxide could lower the pH of the oceans to where they become acidic, killing off ocean life.
This is physically and chemically impossible, and now we can better understand the enormous benefits CO2 is bringing to the oceans. The Ocean “acidification” from carbon dioxide emissions preached by the scaremongers would require an impossible ten-fold decrease in the alkalinity of surface waters.
Even if atmospheric CO2 concentrations triple from today’s four percent of one percent, which would take about 600 years, today’s surface pH of 8.2 would plateau at 7.8, still well above neutral 7.
Ocean health has improved as a result of greater CO2, as it feeds phytoplankton that stimulates the ocean’s food chain.
CO2 allows phytoplankton such as algae, bacteria, and seaweed to feed the rest of the open ocean food chain. As carbon dioxide moves through this food web, much of it sinks or is transported away from the surface.
A high surface pH allows the ocean to store 50 times more CO2 than the atmosphere. Digestion of carbon at lower depths allows for storage there for centuries.
Periodic upwelling recycles carbon and nutrients from deep ocean waters to sunlit surface waters. Upwelling injects far more ancient CO2 into the surface than diffuses from there atmospheric CO2.
Upwelling at first lowers surface pH, but then stimulates photosynthesis, which raises surface pH. It is a necessary process to generate bursts of life that sustain many ocean life forms.
When CO2 enters ocean water, it creates a bicarbonate ion plus a hydrogen ion, resulting in a slight decrease in pH. However, photosynthesis requires CO2.
So marine organisms convert bicarbonate and hydrogen ions into usable CO2, and pH rises again.
Contrary to popular claims that rising CO2 leads to shell disintegration, slightly lower pH does not stop marine organisms from using carbonate ions in building their shells.
The concentration of atmospheric CO2 is governed by the balance between stored carbon and CO2 released back to the atmosphere.
On land, carbon is continuously stored as organic material in living and dead organisms, with some carbon eventually buried in sediments.
During the last major glaciation, expanding glaciers destroyed much of the northern hemisphere’s forests and reduced the Earth’s ability to store terrestrial carbon.
Just as deforestation does today, that loss of forests should have increased atmospheric CO2. Instead, atmospheric CO2 decreased! It appears that the missing CO2 was stored in the ocean.
Across the earth’s upwelling regions, ocean surface pH is primarily affected by the upwelling of ancient stored carbon, rather than human activities. The ocean surface is seldom in equilibrium with the atmosphere.
Recent upwelling of subsurface carbon typically raises surface concentrations of CO2 to 1,000 ppm and temporarily lowers surface pH. The upwelling of old carbon and other nutrients then stimulates photosynthesis in phytoplankton and seagrasses, which then reduces pH.
It is now estimated that 90 percent of the difference in pH between surface waters and deeper waters results from the downward movement of ocean life. When transformed into organic matter, CO2 can be rapidly exported downwards.
For example, anchovy and sardine fecal pellets sink 780 meters in a day. Tiny diatoms, which account for half of the ocean’s photosynthesis, are believed to sink at rates over 500 meters per day because of their dense silica shells.
Upwelling is a vital dynamic that brings carbon and nutrients, otherwise sequestered in the ocean’s depths, back to the surface. Although there may be negative consequences of low-pH and low-oxygen upwelled waters, without the upwelling of low-pH waters, global marine productivity would be greatly reduced.
In the political arena of climate change, crucial factors are misleadingly ignored by those claiming that rising CO2 leads to shell disintegration.
First, shells of living organisms are protected by organic tissues that insulate the shells from changes in ocean chemistry. Mollusk shells are typically covered by a periostracum.
This allows mollusks to thrive near low pH volcanic vents, or in acidic freshwater, or when buried in low pH sediments. Coral skeletons are protected by their layer of living coral polyps.
When shell-forming organisms die they lose that layer of protective tissue and their shells or skeletons may indeed dissolve. However, dissolution also releases carbonate ions, which buffers the surrounding waters and inhibits any further change in pH.
Slightly lower pH does not stop ocean organisms from converting bicarbonate ions into shell-building carbonate ions. Some climate modelers incorrectly suggest that a small drop in pH will inhibit shell-building in marine organisms.
The ability to make shells despite experiencing atmospheric CO2 much higher than today has been preserved in massive deposits of calcium carbonate shells.
So what is the bottom line, the take home to share with friends? The oceans will not become acidic — CO2 enriches all life in the ocean.
There is no evidence to suggest that the oceans are becoming less of a great habitat for marine life due to rising atmospheric CO2.
CO2 is quickly consumed by photosynthesizing bacteria, plankton, and algae. Greater productivity allows more organic carbon to be exported to depths where it can be sequestered for hundreds to thousands of years.
So now you have one more of the fraudulent global warming scares put to rest.
Read more at CFACT
****
PRINCIPIA SCIENTIFIC INTERNATIONAL, legally registered in the UK as a company incorporated for charitable purposes. Head Office: 27 Old Gloucester Street, London WC1N 3AX.
Please DONATE TODAY To Help Our Non-Profit Mission To Defend The Scientific Method.
Trackback from your site.
Finn McCool
| #
Many thanks for posting this article.
I had not heard of CFACT before.
Some really good articles there.
Reply
Charles Higley
| #
Great article except for one thing. The assumption that we have anything to do with the CO2 concentration in the atmosphere. As our emissions go up exponentially, CO2 goes up basically linearly. We are having no detectable effect.
This article should focus on the benefits of higher CO2 but NOT mention that we are a real factor, which we are not. To do so undermines the article.
Reply
Robert Beatty
| #
The missing factor here is discussion about sea temperature. The rising CO2 level in the atmosphere is 100% due to a slight warming change in the average sea temperature – nothing to do with human activities.
Reply
T. C. Clark
| #
After all these years, I still await a clear explanation of how CO2 allows IR from the sun to warm the earth during the day but at night prevents some IR from returning to space. The energy budget of the earth is not the answer. I want an explanation of how CO2 added to the atmosphere does not simply block some IR from the sun during the day and thereby reduce warming during the day so that any blockage at night is offset. CO2 does not know IR from the sun is different in some way from IR from the earth. This is the crux of the whole CO2 matter and some huge explanation of energy budget just obscures the question.
Reply
Josh
| #
Exactly! If I’m on one side of a blanket from the “cold”, it will keep me warm, but if on the other side of the blanket is “hot”, it will keep me relatively cool. An insulator works both ways.
Reply
Squidly
| #
First, our planet is not warmed by Infrared light from our Sun. Very little IR is received from our Sun. Our planet is warmed by short wave radiation from our Sun. As the surface warms that energy excites the surface decreasing much of that energy wavelength into the Infrared spectrum.
However, CO2 can only absorb IR in wavelengths that equate to -180C or around 1200C .. so it would be impossible for CO2 to absorb (as you say “block”) IR from any place on Earth other than the very center of the Antarctica or some remote volcano somewhere.
In short, warming the Earth with CO2 (or any other gas for that matter) is physically impossible
Reply
Herb Rose
| #
Hi Squidly,
I disagree with your contention that gases do not warm the Earth. The gases in the atmosphere absorb solar radiation. What wavelength they absorb depends on their structure with nitrogen and oxygen absorbing uv. These gases emit radiation and what wavelength of radiation is emitted depends on the velocity of the molecules. The greater the velocity the shorter the wavelength and greater the energy emitted. As energy is distributed to more molecules when it penetrates the atmosphere the velocity of the molecules decreases and the wavelength increases. (The sky is blue.) When the gas molecules convert the incoming uv to the visible spectrum it is no longer absorbed by the gases but will add to the energy heating then Earth. This is why when there are no sunspots producing uv light the Earth is cooler.
Herb
Reply