Abstract
The universe is expanding here and probably in the region of other ordinary stars in the cosmos, but the process is reversible. Decades of measurements on the tiny portion of the universe available for study in the solar system revealed internal expansion of a fundamental particle in the process that powers the sun and sustains life: Neutron => Hydrogen Atom. The dynamic process is restrained by competition between attractive forces of gravity and repulsive forces between neutrons. The volume of the neutron increases by about a factor of 1023 when it goes from the compact solar core to become an interstellar atom of hydrogen. The hypothesis that all elements are made from hydrogen in ordinary stars, and the later finding that ordinary stars can transition into neutron stars, suggest that the universe and all of the atoms in it can be represented by cyclic, reversible transitions between two forms of one fundamental particle: Neutron <=> Hydrogen Atom.
- INTRODUCTION
Atomic weight measurements on the elements persuaded Prout (1815, 1816) almost two centuries ago that hydrogen is the fundamental building block of all other elements because their atomic weights appeared to be integral multiples of the atomic weight of hydrogen. Prout’s hypothesis was later found to be inconsistent with more precise measurements of the atomic weights of some elements, like neon and chlorine. This dilemma was resolved by discoveries of the neutron (Chadwick, 1932a,b) and of isotopes like – 20Ne, 22Ne, 35Cl and 37Cl – with atomic weights that are individually close to integral multiples of the atomic weight of hydrogen’s most abundant isotope, 1H (Aston, 1920). After Hoyle (1946) adopted and promoted the idea that other elements are made in stars from hydrogen, the concept of primordial hydrogen became an integral part of the story of stellar nucleosynthesis (e.g., Burbidge et al., 1957).