Seismic Waves and Determining Earth’s Structure
Even though the technology does not exist to travel into all of Earth’s layers, scientists can still learn a great deal about Earth’s structure through seismic waves. Seismic waves are vibrations in the earth that transmit energy and occur during seismic activity such as earthquakes, volcanic eruptions, and even man-made explosions. There are two types of seismic waves, primary waves and secondary waves.
Primary waves, also known as P waves or pressure waves, are longitudinal compression waves similar to the motion of a slinky (SF Fig. 7.1 A). Secondary waves, or S waves, are slower than P waves. The motion of secondary waves is perpendicular to the direction of the wave travel, similar to the motion of vigorously shaking a rope (SF Fig. 7.1 B).
Scientists use seismometers (Fig. 7.2) to measure seismic waves. Seismometers measure the vibrations of the ground, relative to a stationary instrument. Data from a seismometer, also called a seismogram, shows velocity on the y axis and time on the x axis (Fig. 7.3). Note in SF Fig. 7.3 that the P wave occurs first, because they travel at a higher velocity.
SF Table 7.1 shows that P waves have a higher velocity than S waves when traveling through several mineral types. The speed at which seismic waves travel depends on the properties of the material that they are passing through. For example, the denser a material is, the faster a seismic wave travels (SF Table 7.1).
P waves can travel through liquid and solids and gases, while S waves only travel through solids. Scientists use this information to help them determine the structure of Earth. For example, if an earthquake occurs on one side of Earth, seismometers around the globe can measure the resulting S and P waves.
- What are seismic waves? Use your own words to describe them.
- Why do you think that waves traveling through basalt have a higher seismic velocity than a wave traveling through sand?
- How have scientists used seismic waves to determine structure of Earth?
- Think of additional objects, in addition to a slinky or rope tied to a tree, that have a similar motion to a P wave and an S wave.
See more here manoa.hawaii.edu
Please Donate Below To Support Our Ongoing Work To Defend The Scientific Method
PRINCIPIA SCIENTIFIC INTERNATIONAL, legally registered in the UK as a company incorporated for charitable purposes. Head Office: 27 Old Gloucester Street, London WC1N 3AX.
Trackback from your site.