Archaeopteryx Flew but Not Like Birds Today
Credits: ESRF/Pascal Goetgheluck
The question of whether the Late Jurassic dino-bird Archaeopteryx was an elaborately feathered ground dweller, a glider, or an active flyer has fascinated palaeontologists for decades.
Valuable new information obtained with state-of-the-art synchrotron microtomography at the ESRF, the European Synchrotron (Grenoble, France), allowed an international team of scientists to answer this question in Nature Communications. The wing bones of Archaeopteryx were shaped for incidental active flight, but not for the advanced style of flying mastered by today’s birds.
The Munich specimen of the transitional bird Archaeopteryx. It preserves a partial skull (top left), shoulder girdle and both wings slightly raised up (most left to center left), the ribcage (center), and the pelvic girdle and both legs in a ‘cycling’ posture (right); all connected by the vertebral column from the neck (top left, under the skull) to the tip of the tail (most right). Imprints of its wing feathers are visible radiating from below the shoulder and vague imprints of the tail plumage can be recognized extending from the tip of the tail.
“The cross-sectional architecture of limb bones is strongly influenced by evolutionary adaptation towards optimal strength at minimal mass, and functional adaptation to the forces experienced during life”, explains Prof. Jorge Cubo of the Sorbonne University in Paris. “By statistically comparing the bones of living animals that engage in observable habits with those of cryptic fossils, it is possible to bring new information into an old discussion”, says senior author Dr. Sophie Sanchez from Uppsala University, Sweden.
Archaeopteryx skeletons are preserved in and on limestone slabs that reveal only part of their morphology. Since these fossils are among the most valuable in the world, invasive probing to reveal obscured or internal structures is therefore highly discouraged. “Fortunately, today it is no longer necessary to damage precious fossils”, states Dr. Paul Tafforeau, beamline scientist at the ESRF. “The exceptional sensitivity of X-ray imaging techniques for investigating large specimens that is available at the ESRF offers harmless microscopic insight into fossil bones and allows virtual 3D reconstructions of extraordinary quality. Exciting upgrades are underway, including a substantial improvement of the properties of our synchrotron source and a brand new beamline designated for tomography. These developments promise to give even better results on much larger specimens in the future”.
The Munich specimen of Archaeopteryx at beamline ID19 at the ESRF. The limestone plate was mounted on a rotating sample stage and the beam is here centered on the skull using lasers. The X-ray beam, coming from the right of the picture, travels through the sample and arrives at the detector (visible left) where a camera records the signal.
Scanning data unexpectedly revealed that the wing bones of Archaeopteryx, contrary to its shoulder girdle, shared important adaptations with those of modern flying birds. “We focused on the middle part of the arm bones because we knew those sections contain clear flight-related signals in birds”, says Dr. Emmanuel de Margerie, CNRS, France.
“We immediately noticed that the bone walls of Archaeopteryx were much thinner than those of earthbound dinosaurs but looked a lot like conventional bird bones”, continues lead author Dennis Voeten of the ESRF. “Data analysis furthermore demonstrated that the bones of Archaeopteryx plot closest to those of birds like pheasants that occasionally use active flight to cross barriers or dodge predators, but not to those of gliding and soaring forms such as many birds of prey and some seabirds that are optimised for enduring flight.”“We know that the region around Solnhofen in southeastern Germany was a tropical archipelago, and such an environment appears highly suitable for island hopping or escape flight”, remarks Dr. Martin Röper, Archaeopteryx curator and co-author of the report. “Archaeopteryx shared the Jurassic skies with primitive pterosaurs that would ultimately evolve into the gigantic pterosaurs of the Cretaceous. We found similar differences in wing bone geometry between primitive and advanced pterosaurs as those between actively flying and soaring birds”, adds Vincent Beyrand of the ESRF.
Since Archaeopteryx represents the oldest known flying member of the avialan lineage that also includes modern birds, these findings not only illustrate aspects of the lifestyle of Archaeopteryx but also provide insight into the early evolution of dinosaurian flight. “Indeed, we now know that Archaeopteryx was already actively flying around 150 million years ago, which implies that active dinosaurian flight had evolved even earlier!” says Prof. Stanislav Bureš of Palacký University in Olomouc. “However, because Archaeopteryx lacked the pectoral adaptations to fly like modern birds, the way it achieved powered flight must also have been different. We will need to return to the fossils to answer the question on exactly how this Bavarian icon of evolution used its wings”, concludes Voeten.
It is now clear that Archaeopteryx is a representative of the first wave of dinosaurian flight strategies that eventually went extinct, leaving only the modern avian flight stroke directly observable today.
Contacts and sources:
Delphine Chenevier
European Synchrotron Radiation Facility
Trackback from your site.
Joseph Olson
| #
“Compare Pterodactyl Quezalcoatus and its eleven meters wingspan with today’s largest Peruvian Condor five meter wingspan….Meganeura dragonfly with half meter and today’s Atlas moth quarter meter wingspan” ~ Slaying the Sky Dragon
Based on UCSD Aeronautical Engineering analysis the Jurassic period had four times the current surface air density, which explains cold blooded reptiles maintaining warmth and their small ration of lung volume to body mass. Any extrapolation of past conditions that ignore this air density fact are inaccurate.
Reply